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Abstract

A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to
perform ‘‘cloud resolving simulations’’ by directly calculating deep convection and meso-scale circulations, which play key
roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection
have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models
(AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is
required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydro-
static ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques
employed, and present the results from the unique 3.5-km mesh global experiments—with O(109) computational nodes—
using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale con-
vective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of
the new model in the next generation atmospheric sciences.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Higher resolution computations are continuously demanded for global atmospheric modeling. Although
the resolvable scale of global atmospheric models has been the order of 100 km until a few years ago, numer-
ical simulations with resolvable scale of O(10 km) can be achieved due to recent massive computer facilities
[1–3]. As the resolvable scale is coming down to less than 10 km, however, traditional atmospheric general
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circulation models (AGCMs) encounter fundamental difficulties in the dynamic framework formulation as
well as in the computational efficiency. As the resolution increases, AGCMs start capturing flow features with
the scales of motion comparable in the horizontal and the vertical (e.g., deep convection, fine scale gravity
waves), whereupon the hydrostatic approximation becomes invalid. Although deep convective systems in
the tropics play key roles in the global atmospheric circulations, they have not been directly resolved by
AGCMs, and their effects have been considered in parameterized form [4]. Effects of fine scale gravity waves
that are parameterized as gravity wave drag in AGCMs become captured as well as the resolution increases,
and propagation of such gravity waves is incorrectly calculated unless the nonhydrostatic effect is taken into
account.

For the numerical algorithm, many of the existing AGCMs employ the spectral transform method to rep-
resent the spherical fields. It is pointed out, however, that as the horizontal resolution increases, the spectral
transforms become inefficient for high performance computing; e.g., [5–9]. One of the serious problems is the
computational inefficiency of the Legendre transformation: the computational operations are O(N3) complex,
where N is the truncation number. Another problem occurs for the computation on a massively parallel com-
puter: the spectral transform method requires extensive data movement between computer nodes. Although
the double Fourier transformation method is proposed by [9–12] as an alternative, this method still requires
global communication between computer nodes.

To drastically increase the horizontal resolution, both of governing equations and numerical algorithms
must be reconsidered for a new type of global atmospheric models. First, the nonhydrostatic dynamical
cores must be chosen as the governing equations. Next, instead of the spectral methods, the grid point
method is a prospective alternative for high-resolution modeling. As for the familiar latitude–longitude grid,
however, the grid spacing near the poles becomes unaffordably small as the horizontal resolution is
increased, so that numerical filters or reduced grids are required to avoid the computational instability near
the poles, in general. In principle, the semi-Lagrangian, semi-implicit (SLSI) approach (cf. articles by
Laprise, and by Staniforth and Wood in the same issue) might be employed to overcome severe restrictions
of the time interval for the Courant–Friedrich–Lewy (CFL) condition. Several authors [13–19] have used the
latitude-longitude grid to solve the set of nonhydrostatic equations with the SLSI approach to acquire a
large time interval for integration. However, it is unclear how effective the elliptic solvers, developed for
the SLSI schemes, would be for the stiff boundary value problems accompanying the ultra-high resolution
calculations.

One can overcome the pole problem using other types of grid system with quasi-homogeneous grids over
the sphere, such as icosahedral grids (references shown below), cubic grids [20–23], overset grids [24], and oth-
ers [25]. As an example of the overset grids, [24] extended a nonhydrostatic model, MM5 (the PSU/NCAR
mesoscale model [26]) to cover the global domain using two set of polar stereo coordinates. For the time inte-
gration scheme, the split-explicit scheme is used for horizontal propagation of fast waves with implicit treat-
ment for vertical propagation [27], so that the use of the multi-dimensional elliptic solver is circumvented.
However, their approach requires interpolating dependent variables around the overlapping regions so that
conservation of physical quantities is not guaranteed. Although the use of overset grids is an easiest way to
extend existing nonhydrostatic models to the global domain, physical properties derived from special treat-
ment of the overlapping regions are unknown a priori.

The icosahedral grid, proposed originally by [28,29], is nowadays one of the major grid systems for atmo-
spheric modeling. After early attempts of icosahedral grid modeling [30–34], the icosahedral models have been
revisited in the recent context of high resolution modeling. Primitive (hydrostatic) equation global models
using the icosahedral grid are being developed at Colorado State University for climate modeling (CSU
AGCM) [35–37], Deutscher Wetterdienst for numerical prediction modeling (GME) [38,39], and the Max
Planck Institute for Meteorology (ICON) [40]. Another streams of icosahedral grid modeling for shallow
water are found in [5,41,42].

At Frontier Research Center for Global Change/Japan Agency for Marine-Earth Science and Technology
(FRCGC/JAMSTEC), we are taking a unique approach to develop an icosahedral atmospheric model using
the nonhydrostatic system. The new model is called NICAM (Nonhydrostatic ICosahedral Atmospheric
Model). In preliminary studies, we have examined properties of icosahedral grids and improved numerical
accuracy of the differential operators and homogeneity of the grid system using the spring dynamics
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[43,44]. Several techniques are proposed to achieve smoother icosahedral grids [36,45]; the spring dynamics
modification by [43,44] is one of the major approaches to construct the icosahedral grids.

NICAM is intended to be used for ‘‘cloud resolving simulations’’ by decreasing grid intervals below 5 km
using the outstanding computing power of the Earth Simulator [46]. We have developed NICAM as a unified
model in the sense that it can be used for both short term numerical predictions for weather systems such as a
week, and long term simulations to obtain quasi-equilibrium climate states. (Such a unified model approach is
also taken by [14,19]). There are different types of nonhydrostatic global models [47]; incompressible, anelastic,
and elastic systems can be considered. We use the fully compressible (elastic) nonhydrostatic system to obtain
thermodynamically quasi-equilibrium states by long time simulations. For this purpose, we devised a nonhy-
drostatic numerical scheme which guarantees conservation of mass and energy [48,49]. [50] implemented this
nonhydrostatic scheme to the global model using the icosahedral grid configuration, and developed a dynam-
ical core of NICAM. In [50], formulation and numerical scheme of the dynamical core of NICAM are
described, together with numerical results of several test cases. [51] also showed numerical results of dynamical
core experiments of extra-tropical cyclones in the context of consistency of horizontal and vertical grid ratios.

In essence, the numerical scheme of NICAM is an extension of that of the regional model [48,49] to the
global model using the modified icosahedral grid [43,44]. Details of the formulation of the dynamical core
of NICAM is presented in [50]. The split-explicit time integration scheme [27] is used for horizontal propaga-
tion of waves, and implicit scheme is used for vertical propagation of sound/gravity waves; thus, multi-dimen-
sional elliptic solvers are not required. To extend the original nonhydrostatic scheme to the global domain, we
need to reformulate the set of equations shown in [48,49] for the spherical geometry and modify the scheme
suitable for the icosahedral grid configuration. The finite volume method is used for numerical discretization,
so that total mass and energy over the domain is conserved; thus this model is suitable for long term climate
simulation.

In this paper, we review the formulation of NICAM, together with the results of global cloud resolving sim-
ulations. In particular, we describe the governing equations including moist processes used for NICAM, as an
extension of the dynamical core [50]. The results of the global experiments with 3.5-km horizontal-mesh inter-
val are reported by [52–54], and their computational performance is summarized by [8]. These are experiments
under an aqua-planet condition [55], with full physics included (i.e., radiation, boundary layer, and cloud
microphysics schemes). Since the formulation of the equations with moist process for NICAM has not been
described yet, this paper documents the full physics model. In Section 2, governing equations of NICAM with
moist processes are summarized; details of the formulation are supplemented in the appendices A and B.
Numerical techniques of NICAM are described in Section 3. Representative results of global cloud resolving
simulations are reviewed in Section 4, where the results from the aqua-planet experiment and a first result of a
global cloud resolving simulation with realistic land and sea distributions are shown. In Section 5, after
reviewing the background of development of NICAM, we will discuss scientific relevances and the future per-
spective of NICAM. We summarize the paper in Section 6.
2. Governing equations

In this section, the governing equations with the full moist physics used for NICAM are summarized. The
formulation of the ‘‘dry’’ dynamical core is described in [50]. For the moist formulation of NICAM, we follow
that of the Cartesian coordinate model [49]. While the warm rain process without ice is described in [49], we
extend this scheme to cover the spherical geometry and to take account of the effects of ice. We also introduce
deep atmosphere dynamics as described in [50]. Here, we write the governing equations of NICAM in a com-
pact operator form, as actually integrated in the model. Formal definitions of the operator notation are pro-
vided in Appendix A; whereas a derivation of the governing equations set, starting with more basic fluid
equations, is outlined in Appendix B. In this section, the resultant set of the equations is summarized. Descrip-
tion of symbols is given in Table 1.

We emphasize two metric symbols: c ” r/r0 for deep atmosphere, and G1/2 ” (oz/on)h, for the terrain-follow-
ing coordinates, where the vertical coordinate n is related to height z as a monotonic function of n = n(z)
(Appendix A). Multiplying the original set of physical variables by G1/2 c2, we define following variables:



Table 1
Description of symbols in the text

Symbol Description Unit

k, h Longitude, latitude
r Distance from the center of the earth [m]
r0 Radius at the mean sea level (the earth radius) [m]
c � r=r0 Normalized radial distance
z ¼ r � r0 Height from the mean sea level [m]
t Time [s]
î; ĵ; k̂ Unit vectors in the longitudinal, latitudinal, and outward directions
u Scalar quantity
u Vector quantity
ðuk; uh; uzÞ ¼ u � ð̂i; ĵ; k̂Þ Components of u

uh ¼ u� k̂uz horizontal vector of u

$, $Æ Three-dimensional gradient operator, divergence operator [m�1]
$h, $hÆ Two-dimensional gradient operator, spherical divergence operator [m�1]
$h0 = c$h Normalized two-dimensional gradient operator [m�1]
n = n(z) An arbitrary monotonic function of height
zT The top of the model domain [m]
zs The surface height [m]
~rh0 Two-dimensional gradient operator on a constant n shell

G1=2 � ðoz
on Þh Metric

Gz � rh0n Metric
q Total density of moist air [kg m�3]
qv Mass concentration of vapor [kg kg�1]
lmax, kmax Total numbers of liquid/solid water components
ql;j ðj ¼ 1; . . . ; lmaxÞ Mass concentration of j-th component of liquid water [kg kg�1]
qi;k ðk ¼ 1; . . . ; kmaxÞ Mass concentration of k-th component of solid water [kg kg�1]
ql ¼

Plmax

j¼1 ql;j Mass concentration of liquid phase of water [kg kg�1]

qi ¼
Pkmax

k¼1 qi;k Mass concentration of solid phase of water [kg kg�1]
qw = qv + ql + qi Mass concentration of total water [kg kg�1]
qd = 1 � qw Mass concentration of dry air [kg kg�1]
sn Mass source term of n-th component [kg m�3 s�1]
v Velocity vector of the air [m s�1]
w ¼ v � k̂ Vertical velocity of the air [m s�1]
vh ¼ v� wk̂ Horizontal velocity vector of the air [m s�1]
w�l;j;w

�
i;k ðj ¼ 1; . . . ; lmax; k ¼ 1; . . . ; kmaxÞ Terminal velocities relative to the air [m s�1]

v�l;j ¼ ð0; 0;w�l;jÞ; v�i;k ¼ ð0; 0;w�i;kÞ Terminal velocity vectors relative to the air [m s�1]
p Pressure [Pa]
T Temperature [K]
g Acceleration due to gravity [m s�2]
X Angular velocity of the earth [rad s�2]
f Frictional force [kg m�2 s�2]
a ¼ r � ðqv� vÞ Advection term of the momentum equation [kg m�2 s�2]
c = 2qX · v Coriolis force term [kg m�2 s�2]
Lv, Lf Latent heats for vaporization and fusion [J kg�1]
Lv00, Lf00 Latent heats for vaporization and fusion at 0 K [J kg�1]
Cpd The specific heat at constant pressure for dry air [J kg�1 K�1]
Cpv The specific heat at constant pressure for water vapor [J kg�1 K�1]
Cl, Ci The specific heat for liquid/solid water [J kg�1 K�1]
hn Enthalpy of n-th component per unit mass [J kg�1]
en Internal energy of n-th component per unit mass [J kg�1]
Rd Gas constant for dry air [J kg�1 K�1]
Rv Gas constant for water vapor [J kg�1 K�1]
h Moist enthalpy per unit mass [J kg�1]
e Moist internal energy per unit mass [J kg�1]
qheat Source term of internal energy [W m�3]
CV ¼ qdCvd þ qvCvv þ qlCl þ qiCi Specific heat of total air at constant volume [J kg�1 K�1]
ea � CVT Sensible heat part of internal energy [J kg�1]
ha � h� ðqvLv00 � qiLf00Þ Sensible heat part of enthalpy [J kg�1]

(continued on next page)
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Table 1 (continued)

Symbol Description Unit

k Kinetic energy [m2 s�2]
/ Geopotential [m2 s�2]
qs Density of a basic state [kg m�3]
ps Pressure of a basic state [Pa]
q0 = q � qs Density perturbation [kg m�3]
p0 = p � ps Pressure perturbation [Pa]

R = G1/2c2q 0 Prognostic variable of density [kg m�3]a

P = G1/2c2p0 Pressure perturbation [Pa]a

Vh = G1/2c2qvh Prognostic variable of horizontal momentum vector [kg m�2 s�1]a

W = G1/2c2qw Prognostic variable of vertical momentum [kg m�2 s�1]a

Ea = G1/2c2qea Prognostic variable of sensible heat part of internal energy [J m�3]a

Etot = G1/2c2qetot Total energy [J m�3]a

Qn = G1/2c2qqn Prognostic variable of n-th component of mass concentration [kg m�3]a

GA Tendency term of variable A (A = R, Vh, W, Ea, Qn, Ea + K + U) [(unit of A) · s�1]a

W �
n ¼ G1=2c2qqnw�n Precipitation mass flux of n-th component of water [kg m�2 s�1]a

ðeF; eQheat; eSnÞ ¼ G1=2c2ðf; qheat; snÞ Source terms of momentum, energy, and n-the component of mass concentration

ðeA; eCÞ ¼ G1=2c2ða; cÞ Advection of momentum and the Coriolis force

(K,U) = qG1/2c2(k,/) Kinetic energy, potential energy [kg m�1 s�2]a

Ng Total grid number
Pi (i = 0, . . . , 6)c Vertices of triangles
Qi (i = 1, . . . , 6)c Vertices of control volumes
s0, s1, s2 Areas of triangles [m2]
a(P0) Area of control volume at P0 [m2]
bi (i = 1, . . . , 6)c Geodesic arc length of QiQi+1

b [m]
ni (i = 1, . . . , 6)c Outward unit vector at the midpoint of QiQi+1

b

{e1,e2,e3} Orthogonal basis
(vh1,vh2,vh3) = vh Æ (e1,e2,e3) Components of horizontal velocity vector [m s�1]

(Vh1,Vh2,Vh3) =
qG1/2c2(vh1,vh2,vh3)

Components of horizontal velocity vector [kg m�2 s�1]a

Dt Large time step interval [s]
Ds Small time step interval [s]
Ns = Dt/Ds Split number
/* = / � /t Deviation of / from its value at large time step t

~gt Modified gravity at t [m s�2]
cs = [(Rd/Cv)ha]1/2 Acoustic wave speed [m s�1]
D Three-dimensional divergence of momentum [kg m�3 s�1]
AdH, AdV Divergence damping coefficients [m4 s�1]
adH, adV Nondimensional divergence damping coefficients

Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pr2

0=Ng

q
Mean horizontal grid interval [m]

KH Lateral diffusion coefficient [m4 s�1]
cH Nondimensional lateral diffusion coefficient
sdiv ¼ Dx4=AdH Damping time of horizontal divergence damping [s]
sdif ¼ Dx4=KH Damping time of lateral diffusion [s]
V t Average mass flux over large time step interval [kg m�2 s�1]

a G1/2 is assumed to be nondimensional.
b i + 1 is replaced by 1 if i = 6.
c 6 is replaced by 5 if the control volume is pentagon.
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ðR; P ;Vh;W ;Ea;QnÞ ¼ G1=2c2ðq0; p0; qvh; qw; qea; qqnÞ;
where q 0 and p 0 are perturbation fields of density and pressure from a basic state that satisfies the hydrostatic
balance equation: q 0 = q � qs and p 0 = p � ps with
0 ¼ � ops � qsg;
oz
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where ps and qs stand for pressure and density of a basic state, which depends only on height z. Note q is the
total density of moist air including contribution of water substances. vh and w are the horizontal velocity vec-
tor and the vertical velocity component, respectively; ea is the sensible heat part of internal energy defined by
(B.14); qn stands for the n-th component of water substance: water vapor for n = 1, liquid water for
2 6 n 6 jmax + 1, and solid water for jmax + 2 6 n 6 jmax + kmax + 1. The number of liquid water categories
is jmax and that of solid water (ice) categories is kmax (see Appendix B).

Multiplying (B.6), (B.8), (B.9), (B.15) and (B.1)–(B.4) by factor G1/2c2, and using (A.3) and (A.6)–
(A.8) we obtain the following prognostic equations of deep atmosphere in the terrain-following
coordinates:
oR
ot
þ ~rh0 �

Vh

c

� �
þ o

on
Vh

c
�Gz þ W

G1=2

� �
¼ GR; ð1Þ

oVh

ot
þ ~rh0

P
c
þ o

on
Gz P

c

� �
¼ GVh

; ð2Þ

oW
ot
þ c2 o

on
P

G1=2c2

� �
þ Rg ¼ GW ; ð3Þ

oEa

ot
þ ~rh0 � ha

Vh

c

� �
þ o

on
h

Vh

c
�Gz þ W

G1=2

� �� �
� vh � ~rh0

P
c
þ o

on
Gz P

c

� �� �
þ w c2 o

on
P

G1=2c2

� �
þ Rg

� �� �
þ Wg ¼ GEa ; ð4Þ

oQn

ot
þ ~rh0 � qn

Vh

c

� �
þ o

on
qn

Vh

c
�Gz þ W

G1=2

� �� �
¼ GQn

; ð5Þ
where Gz ” $h0n which is defined in Appendix A. In (1)–(4), the left hand side terms are associated
with fast propagating waves, while the right hand side terms are related to slow motions. This cate-
gorization is used for the time integration scheme in Section 3.3. The terms on the right hand sides
are expressed as
GR ¼ �
X

n

o

on
W �

n

G1=2

� �
; ð6Þ

GVh
¼ eFh � eAh � eCh �

X
n

o

on
vh

W �
n

G1=2

� �
; ð7Þ

GW ¼ eF z � eAz � eCz �
X

n

o

on
w

W �
n

G1=2

� �
; ð8Þ

GEa ¼ �
X

n

o

on
CnT

W �
n

G1=2

� �
�
X

n

W �
ng � vh � eFh þ weF z

	 

� Lv00

eS v þ Lf00
eS i þ eQheat; ð9Þ

GQn
¼ eS n �

o

on
W �

n

G1=2

� �
; ð10Þ
where W �
n is the mass flux of precipitable water substances, defined by
W �
n ¼ G1=2c2qqnw�n;
w�n is the terminal velocity relative to the air, and is non-zero only for precipitable water substances: e.g.,
‘‘rain’’ and ‘‘snow’’. Cn is the specific heat of the n-th component of water substance: Cn = Cl for liquid water

and Cn = Ci for ice. ðeF; eQheat; eS �Þ � G1=2c2ðf; qheat; s�Þ (see Appendix B for definitions). Vectors of the advec-

tion of momentum and the Coriolis force are ðeA; eCÞ ¼ G1=2c2ða; cÞ, and eAh and eAz are the horizontal and ver-

tical components of eA. We introduce an orthogonal basis {e1,e2,e3} fixed to the earth, where e3 is in the same
direction as X, and define the three components of velocity by (v1,v2,v3) = v Æ (e1,e2,e3), as shown by Fig. 1. In
this case, ðeA; eCÞ are specifically expressed as



 =  v  , v  , v1          2          3v (                )

e1

e3

e2

Ω

P

Fig. 1. Definitions of three components of velocity vector v and an orthogonal basis {e1,e2,e3}. An orthogonal basis is fixed to the earth
with e3 parallel to the rotation vector X. The velocity vector v defined at point P is decomposed of three components (v1,v2,v3) in the
directions of {e1,e2,e3}.
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eA � ~rh0 � v1

Vh

c

� �
þ o

on
v1

Vh

c
�Gz þ W

G1=2

� �� �� �
e1 þ ~rh0 � v2

Vh

c

� �
þ o

on
v2

Vh

c
�Gz þ W

G1=2

� �� �� �
e2

þ ~rh0 � v3

Vh

c

� �
þ o

on
v3

Vh

c
�Gz þ W

G1=2

� �� �� �
e3; ð11Þ

eC � qG1=2c2ð�2jXjv2e1 þ 2jXjv1e2Þ: ð12Þ
For numerical integration, we supplementary use the equation of the total energy, which can be given from
(B.18):
o Ea þ K þ Uð Þ
ot

þ ~rh0 � ðha þ k þ /ÞVh

c

� �
þ o

on
ðha þ k þ /Þ Vh

c
�Gz þ W

G1=2

� �� �
¼ GEaþKþU; ð13Þ
where (K,U) = qG1/2c2(k,/), which are kinetic energy and potential energy, respectively, and
GEaþKþU ¼ �
X

n

o

on
CnT

W �
n

G1=2

� �
� Lv00

eS v þ Lf00
eS i þ eQheat: ð14Þ
3. Numerical methods

3.1. Overview of the numerical methods

The governing prognostic equations solved in NICAM are (1)–(4) for the dynamical part, and (5) for water
components. Eqs. (1)–(4) are equivalent to (28)–(31) of [50] except for the details of source terms. We use the
same discretization method as [50] to integrate these equations. For the horizontal discretization, we use the
icosahedral grid system on the sphere. Fig. 2 exemplifies a series of consecutive icosahedral grids. The original
icosahedron consists of 20 triangles; we called it ‘‘glevel-0’’ (grid division level 0). By dividing each triangles
into four small triangles recursively, we obtain one-higher resolution with ‘‘glevel-n’’ (grid division level n).
The total number of grid points is Ng = 10(2n)2 + 2. We further modify the horizontal grid structure by spring
dynamics to obtain smooth distribution of horizontal mesh [43,44]; see Section 3.2. The Lorenz grid is used for
the vertical grid configuration (Fig. 3). Horizontally, all the prognostic variables are defined at the same col-
location points at the mass centers of control volumes (hexagon or pentagon). Vertically, R, Vh, E are defined
at the integer levels and W is defined at the half-integer levels as shown in Fig. 3. Water components Qn are
defined at the same points as E.



Fig. 2. The icosahedral grids with glevel-0 (a), 1 (b), 2 (c), and 3 (d).

k=2

k=1+1/2

k=2+1/2

k=3

k=3+1/2

k=kmax

k=kmax-1/2
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k=kmax-3/2
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W
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W

R EVh,,

R EVh,,

R EVh,,
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Fig. 3. Vertical levels and locations of variables of the Lorenz grids. R is density, Vh is horizontal velocity, W is vertical velocity, and E is
internal energy. Water components Qn are defined at the same points as E. k is the index of the vertical levels, and the number of the
vertical levels is kmax.
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There is an ongoing debate for the choice of the vertical grid system, i.e., the Lorenz grid vs the Charney–
Phillips grid [56–59]. In the Lorenz grid, both thermodynamic variables are staggered with respect to vertical
velocity, while temperature and vertical velocity are defined at the same vertical levels in the Charney–Phillips
grid. So far, we have not encountered any difficulties with the Lorenz grid. We believe that the Lorenz grid is
appropriate for the nonhydrostatic system, where the three-dimensional divergence is defined at the same
point as thermodynamic variables and deviations from the hydrostatic balance are automatically adjusted
in the nonhydrostatic system. Nonetheless, we appreciate that properties of the numerical modes reported
by [51] may depend on the vertical grid system.

We use the split-explicit scheme to integrate the governing equations. Fig. 4 outlines the time integration
procedure. The fast mode terms are evaluated at every small time step with a time interval Ds, while the slow
mode terms are evaluated at large time steps with a larger time interval Dt, thus defining the split number
Ns = Dt/Ds. For the small time step integration, we implicitly solve vertical propagation of fast waves and
explicitly solve horizontal propagation of fast waves; this method is referred to as the horizontally explicit
and vertically implicit scheme (HEVI; [60,61]). We use the forward-backward scheme based on the HEVI
scheme and the flux division method [48], discussed later in Section 3.3. To guarantee the conservation of total
energy, the energy correction step is introduced using the equation of total energy (13) [48,49]; see Section 3.3
for further discussion.

For the large time step integration, we use the 2nd-order Runge–Kutta scheme (Fig. 4), and allow the 3rd-
order Runge–Kutta scheme as an option for enhanced numerical stability [62,63]. The advection terms of
momentum and physical processes are evaluated at large time steps.

3.2. Icosahedral discretization

We use the icosahedral grid for the horizontal mesh structure. For numerical modeling using the icosahe-
dral grid, different approaches have been proposed for grid-point allocation, together with the choice of the
prognostic variables [64]. [35,36] employed the Z-grid [65] using potential vorticity and divergence as prognos-
tic variables. Although it is a good choice to represent geostrophic adjustment, two-dimensional elliptic solvers
are required for the time integration. [66] modified this scheme so as to guarantee conservation of total energy
and potential entropy, and then the ZM-grid is developed by [67] using velocity components as prognostic
variables to avoid use of the elliptic solver. The ZM-grid is the staggering grid system in which velocity com-
ponents and mass are defined at different points. Since the number of definition points of velocity is twice as
many as those of mass, the ZM-grid has computational modes. In [67], several methods are proposed to filter
out the computational modes of the ZM-grid.

[5,41,39] use the velocity itself as the prognostic variable and allocate all the prognostic variables at the
same triangle vertices; this grid system is equivalent to so-called the A-grid. We also employ the A-grid for
our global nonhydrostatic model. The A-grid system does not contain computational modes, except for
two-grid checker board noise. Besides, the A-grid has an advantage for data-handling and communication
on the parallel computing. However, it is difficult to give physical meanings for the two-grid scale waves
Δτ Δτ Δτ Δτ

Δ t /2 Δ t
1.

2.
Δτ Δτ Δτ Δτ Δτ Δτ Δτ Δτ

S(t  )A
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Fig. 4. Procedures of time integration. Case for the splitting number Ns = 8 with the 2nd-order Runge–Kutta scheme. NICAM also
introduces the 3rd-order Runge–Kutta scheme as an option.
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[65], so they should be regarded as a grid noise. The A-grid system has less horizontal resolution than the Z-
grid or the ZM-grid if the same number of the grid points are used, and requires stronger numerical filters to
remove grid noises.

We construct the icosahedral grid by a recursive division method [5]. Since areas of such obtained triangles
are not smoothly distributed on the sphere, we need modification of grid arrangement to achieve second-order
accuracy of descretization [43]. We modify the location of grid points by using spring dynamics as shown by
Fig. 5. In this process, the parameter b defined in [43] is chosen as b = 1.15; b is associated with natural spring
length, [44] shows that this value gives a well optimized grid structure from the viewpoints of both numerical
accuracy and computational efficiency. After this modification, the control volume is defined by connecting
the mass centers of triangular elements. The shape of control volume is hexagonal except for the pentagon
at the twelve vertices of the original icosahedron. We furthermore relocate all the definition points of the prog-
nostic variables to the mass centers of the control volumes. The icosahedral grid by the n-th time recursive
division is referred to glevel-n. Fig. 6 shows the modified icosahedral grid for glevel-5 with b = 1.15. [43]
showed that these modifications guarantee the second-order accuracy for horizontal differential operators
at all the grid points when their discretization method is used. [45] compare various modification methods
and examine properties of different icosahedral grids.
Fig. 5. Connection of springs for the modification of the grid points using spring dynamics.

Fig. 6. Modified icosahedral grid by spring dynamics (glevel-5).
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The arrangement of definition points and horizontal control volume is schematically shown by Fig. 7. If a
set of vectors u is given at all the vertices of triangles Pi in Fig. 7, vectors u at the vertices of control volume Qi

are interpolated as
uhðQiÞ ’
s0uhðP 0Þ þ s1uhðP iÞ þ s2uhðP 1þmodði;6ÞÞ

s0 þ s1 þ s2

; ð15Þ
where s0, s1, and s2 are the areas of QiPiP1+mod(i,6), QiP1+mod(i,6)P0, and QiP0Pi, respectively. The number 6 is
replaced with 5 at the pentagonal control volumes. The divergence is calculated from the Gauss theorem as
rh0 � uhðP 0Þ ’
1

aðP 0Þ
X6

i¼1

bi

uhðQiÞ þ uhðQ1þmodði;6ÞÞ
2

� ni; ð16Þ
where bi and ni denote the geodesic arc length of QiQ1+mod(i,6) and the outward unit vector normal to this arc
at the midpoint of QiQ1+mod(i,6). a(P0) is the area of control volume associated with the point P0.

The gradient operator to an arbitrary variable / is calculated as
rh0/ðP 0Þ ’
1

aðP 0Þ
X6

i¼1

bi

/ðQiÞ þ /ðQ1þmodði;6ÞÞ
2

ni �
/0

aðP 0Þ
X6

i¼1

bini; ð17Þ
where /(Qi) is interpolated by the similar way to (15). In general, the gradient vector given by (17) contains a
vertical component, since the allocation points are on the sphere. We simply set the vertical component of the
gradient vector equal to zero after the operation of (17).

[43] examined properties of differential operators and convergence of the shallow water solutions. Fig. 8
shows resolution dependency of the error norms of divergence operator $ Æ u where u = sink$(cos 3kcos4 3h);
h and k are latitude and longitude, respectively. The error norms are defined by
l2ðxÞ ¼
ðI ½ðx� xtÞ2�Þ1=2

ðI ½x2
t �Þ

1=2
; l1ðxÞ ¼

max jx� xtj
max jxtj

;

xt is the exact solution and I denotes the global-averaging operator. Compared to the standard grid (denoted
by STD-grid), the modified grid (denoted by SPR-GC-grid) shows better convergence, particularly seen in the
infinity norm l1. Fig. 9 is the error norm of height h for the shallow water equations with rigid body rotation
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Fig. 7. Horizontal control volume and arrangement of points in case of a pentagonal shape.
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Fig. 8. Convergence properties of error norms for divergence operator. Figure reproduced from [43].
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Fig. 9. The time sequence of l1(h) norm for Williamson’s test case 2. Comparison between the standard grids (STD-grid, STD-GC-grid)
and the modified grid (SPR-GC-grid) for glevel-5 (top) and dependency on the resolution from glevel-4 to glevel-7 (bottom). Figure
reproduced from [43].
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(Williamson’s test case 2; [68]). ‘‘STD-grid’’ is the standard grid without any modification and ‘‘SPR-GC-grid’’
is the modified grid by spring dynamics; ‘‘GC’’ means further modification by moving the definition points of
variables to the gravitation centers of control volumes; see [43]. The numerical solution with the modified grid
(SPR-GC-grid) is stable for 5-days integration, while the solutions with the standard grids (STD-grid, STD-
GC-grid) have much errors as times goes on. As resolutions become finer from glevel-4 to glevel-7, the infinity
norms of the numerical solutions with the modified grid systematically decreases; the second-order accuracy is
achieved by this method.

The evaluation of the advection terms of momentum would contain the metric terms if the spherical coor-
dinates are used. In order to avoid explicit treatment of the metric terms, we use orthogonal basis {e1,e2,e3}
independent of positions for the evaluation of the advection terms. The velocity vector V is composed of Vh

and W, whose governing equations are (2) and (3), respectively. For time integration of Vh, we use three Carte-
sian components of horizontal velocity vector: (Vh1,Vh2,Vh3) = Vh Æ (e1,e2,e3). That is, the prognostic equa-
tion of the horizontal velocity vector (2) consists of three equations, so that we need four equations to
update the velocity vector: (Vh1,Vh2,Vh3,W). From Vh and W, we can construct the three-dimensional vector
v ¼ vh þ wk̂ ¼ Vh

qG1=2c2
þ W

qG1=2c2
k̂: ð18Þ
The advection term eA is calculated using (11) by inserting each of the orthogonal components of v:
ðv1; v2; v3Þ ¼ ðvh1 þ w cos h cos k; vh2 þ w cos h sin k; vh3 þ w sin hÞ; ð19Þ

where (vh1,vh2,vh3) = vh Æ (e1,e2,e3) = (Vh1,Vh2,Vh3)/qG1/2c2. The advection vector eA is split again into a hor-

izontal vector as the horizontal advection term
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E�sþDs
a � E�sa

Ds
þ ~rh0 � ht

a

V�sþDs
h

c

� �
þ o

on
ht

a

V�sþDs
h

c
�Gz þ W �sþDs

G1=2

� �� �
þ ~gtW �sþDs

¼ � ~rh0 � ht
a

Vt
h

c

� �
þ o

on
ht

a

Vt
h

c
�Gz þ W t

G1=2

� �� �� �
þ Vt

h

qtG1=2c2
� ~rh0

P t

c
þ o

on
Gz P t

c

� �� �
� ~gtW t þ Gt

Ea
; ð23Þ
where
~gt ¼ g � 1

qtG1=2c2
c2 o

on
P t

G1=2c2

� �
þ Rtg

� �
: ð24Þ
In (23), the major part of work done by the pressure gradient force and the buoyancy force is evaluated by
using the large time step stratification (24). The enthalpy in the advection terms plays a role of the acoustic
wave speed ðc2

s ¼ ðRd=CvÞht
aÞ and is evaluated at large time steps.

We first integrate (21) by the forward method. Using thus obtained V�sþDs
h , we couple (20), (22) and (23) to

construct a one-dimensional Helmholtz equation for W*s+Ds by eliminating R*s+Ds and P*s+Ds. To do this, we
rewrite (23) for the equation of pressure as
P �sþDs � P �s

Ds
þ Rd

Cv

o

on
ht

a

W �sþDs

G1=2

� �� �
þ Rd

Cv

~gtW �sþDs ¼ GP ; ð25Þ
where use is made of the approximate relation between P* and E�a:
E�a �
Cv

Rd

P �: ð26Þ
Note that this relation is exact only in the dry case, and conventionally is a good approximation in this solver
[49]. The tendency term GP is the sum of the remaining terms in (23) multiplied by Rd/Cv. After solving the
one-dimensional Helmholtz solver for W*s+Ds, we obtain R*s+Ds from (20). Since (20) is in the flux form, the
total integral of mass over the domain is conserved in this scheme.

For the evaluation of internal energy E*s+Ds, we use the conservative method proposed by [48,49] to
guarantee the conservation of total energy. That is, we use the following flux form of the total energy
equation:
EsþDs
tot � Es

tot

Ds
þ ~rh0 � ha þ /þ kð Þt V�sþDs

h

c

� �
þ o

on
ha þ /þ kð Þt V�sþDs

h

c
�Gz þ W �sþDs

G1=2

� �� �
¼ Gt

EaþKþU; ð27Þ
where Etot = Ea + K + U. Since (K + U)s+Ds is known, E�sþDs
a can be obtained by
E�sþDs
a ¼ EsþDs

a � Et
a ¼ EsþDs

tot � ðK þ UÞsþDs � Et
a: ð28Þ
In the flux form equations, vertical transports of momentum and energy in addition to water mass associated
with precipitable water components are taken into account. These transports are calculated using an accurate
one-dimensional conservative semi-Lagrangian scheme [69]. The associated energy transformation from po-
tential energy of precipitating substances to internal energy are properly evaluated after [70].
3.4. Numerical filters

For numerical stabilization, we introduce two kinds of numerical filters to the model: divergence damping
[71] and biharmonic horizontal diffusion. These filters are somewhat different from our previous report [50].

The divergence damping term is used in the momentum equation to suppress instability associated with the
time splitting scheme. Different from the widely-used divergence damping [71,50], we use the higher order
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scheme to suppress small scale numerical disturbances. The pressure gradient terms in (2) and (3) are modified
as
~rh0

P
c
! ~rh0

P � AdH
~r2D

c
;

c2 o

on
P

G1=2c2

� �
! c2 o

on
P � AdV

~r2D

G1=2c2

� �
;

where D is the three-dimensional divergence of momentum defined by
D ¼ ~rh0 �
Vh

c
þ o

on
Vh

c
�Gz þ W

G1=2

� �
:

AdH and AdV are the damping coefficients in the horizontal and vertical directions, respectively. They are ex-
pressed by using the nondimensional numbers adH and adV:
AdH ¼ adH

Dx4

Dt
; AdV ¼ adV

Dx4

Dt
; where Dx ¼

ffiffiffiffiffiffiffiffiffi
4pr2

0

N g

s
:

Dx is the mean grid interval in the horizontal directions. The divergence damping term is evaluated every small
time step, so that it is integrated by the Euler method with the small time step interval Ds. If the horizontal grid
interval is much larger than the vertical one, the same value cannot be used both for the horizontal and vertical
directions. In this case, we do not use the vertical divergence damping: adV = 0.

The biharmonic horizontal diffusion terms are applied to all the prognostic Eqs. (1)–(4). We do not use
numerical diffusions in the vertical direction in general. That is,
½R:H:S: of ð1Þ–ð4Þ� ! ½R:H:S: of ð1Þ–ð4Þ� � ~r2
h0 lKH

~r2
h/

� � �
;

where ð/; lÞ 2 ½ðq;G1=2c2Þ; ðe; qG1=2c2Þ; ðvh; qG1=2c2Þ; ðw; qG1=2c2Þ�; KH is the lateral diffusion coefficient on
n-surfaces. The diffusion terms are evaluated at every large time step. Using the large time step interval Dt,
the diffusion coefficient is expressed as
KH ¼ cH

Dx4

Dt
;

where cH is the nondimensional diffusion coefficient.
The corresponding damping times for AdH and KH are defined as
sdiv �
Dx4

AdH

¼ Dt
adH

; sdif �
Dx4

KH

¼ Dt
cH

;

respectively. In general, as the grid interval is halved Dx! Dx=2 (glevel-n! n + 1), the above diffusion times
are halved to suppress smaller scale disturbances. We generally set the large time step interval Dt! Dt/2 to
keep the numerical stability as glevel is increased n ! n + 1. Thus, the nondimensional coefficients adH and
cH are kept constant in general. As default values, we use AdH = KH = 1016 m4 s�1 at the resolution
Dx � 240 km (glevel-5) and Dt = 1200 s.

3.5. Consistency with continuity

The advection term of a tracer q including water substances is calculated at large time steps using (5). It is
pointed out that the consistency with continuity (CWC) for the integration of a tracer should be guaranteed
[72,73]; that is, the advection of a tracer should be consistently constructed from the equation of density (1).
As shown below, CWC is achieved in NICAM by using the time averaged mass flux over small time steps for
calculation of advection of tracers.

By omitting the density change due to precipitation fluxes GR, the time discretized form of (1) is abbreviated
as
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RsþDs � Rs

Ds
¼ �r � V s; ð29Þ
where R = q 0G1/2c2 and Vs is the three-dimensional mass flux vector represented in the second and the third
terms on the left hand side of (1). In this equation, R is updated at every small time step s. This means that the
density change in the long time step interval Dt is given by the average mass flux over Dt defined by
V t ¼ 1

Ns

XNs

n¼1

V tþnDs:
Then, if the tracer per unit volume Q = qG1/2c2q is integrated as
QtþDt � Qt

Dt
¼ �r � ðV tqtÞ; ð30Þ
then (30) with q = 1 is equal to time average of (29) over Dt; that it, the consistency with continuity is
guaranteed.

In the system with precipitating water substances, the concentration of tracer is further changed by the mass
change due to precipitation (6). If an ideal passive tracer q is uniformly given to the initial field, q = 1, q

becomes larger than 1 in the regions where precipitation occurs. If one wants to keep uniform distribution
q = 1, the effect of precipitation can be calculated by adding the following term on the right hand side of (30):
GQ ¼ �
X

n

o

on
q

W �
n

G1=2

� �
: ð31Þ
In fact, the effects of precipitation depend on properties of tracers, so that the form of (31) may be different
between tracers. In summary, in nonhydrostatic models with precipitating substances, in order to keep the uni-
form distribution of tracer, the mass flux should be consistent with continuity equation (CWC), and the mass
change due to precipitation should be properly counted.

4. Numerical results

Various experiments are already done using NICAM. Several dynamical core experiments are shown in
[50], and high-resolution dry experiments for extra-tropical cyclones, together with consistency of horizontal
and vertical grid intervals, are described by [51]. ‘‘Global cloud resolving experiments’’ using 3.5-km horizon-
tal-mesh interval (glevel-11) under idealized aqua-planet condition [55] is reported by [52,8,54]. Climate sen-
sitivity with using 7-km mesh grid is examined by [53]. Instead of cumulus parameterization used in heuristic
AGCMs, a cloud microphysical scheme [74] is used for these 3.5 and 7-km mesh experiments.

The 3.5-km mesh aqua-planet experiment is performed for 10 days after spin-up runs using coarser reso-
lution 14 and 7-km mesh, as described in [52]. The time steps of the 3.5, 7, 14-km mesh experiments are
15, 30, and 30 s, respectively [8]. Fig. 10 shows a global view of the outgoing longwave radiation (OLR) of
the 3.5-km mesh experiment. This is 90 min average between 0:00 and 1:30 at 5th day from the integration.
This shows a hierarchical structure of tropical convection: meso-scale circulation associated with individual
deep clouds, cloud clusters, super-cloud clusters, and planetary scale convectively coupled Kelvin waves.
Fig. 11 shows a Hovmöller diagram of precipitation averaged over latitudes 2�N–2�S for the 3.5 and 7-km
mesh experiments. Note that the 3.5-km mesh run studied by [52,54] corresponds to the time duration between
80 and 90 days, and that Fig. 10 is for day 85. As seen by diagonal signals in Fig. 11, super cloud clusters
propagates eastward; these have a Kelvin wave structure in dynamical fields [54]. Inside the super cloud clus-
ters, cloud clusters with size of a few hundred km are moving westward (Fig. 11, right bottom). They are per-
sistently seen within the super cloud clusters during the integration. This multi-scale structure and motions of
cloud systems possess similar characteristics seen in observations [75,76].

The above experiment is conducted under the same experimental condition proposed by [55], using the CTL
(control) case. Many of research groups conducted this experiment using different AGCMs. Mainly because of
the difference in cumulus closures, the resulting signal of cloud systems were very different between AGCMs
[77]; some results show westward propagation of large scale organized convective systems, and others show



Fig. 10. Global view of the outgoing longwave radiation (OLR) produced by NICAM with the 3.5-km mesh aqua-planet experiment.

Fig. 11. Hovmöller diagrams of precipitation along the equator averaged in latitudes 2�N–2�S. (left) 7-km mesh run, (right top) 3.5-km
mesh run, and (right bottom) zoomed up in the region days 64–67 and latitudes 40E–80E for 7-km mesh run. Unit is mm day�1. After [8].
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scattered signals. To reproduce realistic eastward propagation of cloud systems seen in the observations,
cumulus closures must be properly tuned. Our results with the global cloud resolving simulations will give
a guidance to the choice of cumulus closures in AGCMs.

Next, a preliminary result of a global cloud resolving simulation under realistic land and ocean distribution
with topography is shown. Detailed analysis of this experiment is reported in [78]. Physics package is the same
as that used in [52], except for the effect of moisture is taken into account for the calculation of Richardson



Fig. 12. Global view of OLR produced by NICAM with the 3.5-km mesh realistic land and sea distribution experiment for 00 UTC 5 Apr.
2004. Integration is started from 00 UTC 1 Apr. 2004.
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number of the boundary layer process [79]. A simple ‘‘bucket’’ scheme is used for the land process and the sea
surface temperature is prescribed; the bucket scheme assumes that at each of grid point over land maximum of
water content is restricted by a specified value of bucket height. Giving a NCAR/NCEP reanalysis data at 00
UTC 1 Apr.2004 as an initial condition, a 3.5-km mesh global simulation is conducted for a week. Although
the initial field is coarse resolution (1� · 1�), cloud systems are spun up within a few hours. Fig. 12 shows glo-
bal view of OLR at 00 UTC 5 Apr. of the numerical simulation. The results show that the typhoon (T0401,
SUDAL) is realistically simulated over the western Pacific, though the organization of convective system
seems a little too strong. Cloud patterns of mid-latitude extra-tropical cyclones are well captured. Different
from regional models in which side boundary data are prescribed, large scale circulations are to be spontane-
ously reproduced in global cloud resolving simulations. We are investigating climatology of model results by
performing longer simulation.

5. Future perspective

Before we discuss the future perspective, we shall briefly retrospect to explain the origin of the project. The
background and motivation of this undertaking to develop an ultra-high resolution model is to make a quan-
tum leap in progress in global atmospheric modeling by fully exploiting the grand computing power of the
Earth Simulator (ES) whose development began nearly the same time of the foundation of the Frontier
Research Center for Global Change (FRCGC) as a closely related project.

From a crude estimate, the highest horizontal resolution of global atmospheric model practically possible
by use of the originally planned performance of the ES turned out to be 10 km. Actually a model of this res-
olution was realized soon after the completion of the ES simply by increasing the horizontal resolution of an
already existing AGCM [1]. However at the FRCGC, we considered that a 10-km mesh AGCM with hydro-
static approximation accompanied by convection parameterization would not be a good target as a new
AGCM to be run on the ES because no essentially new mechanism can be included in it and hence qualita-
tively new advance was not expected. In contrast to this, if we can express deep convective clouds in the tropics
directly by the grid system without parameterization, global atmospheric modeling will make a quantum leap.
It is known that cumulonimbus clouds in the tropics are the manifestation of ‘‘vertical convection’’, that is
they transport energy from the surface of the earth to the upper troposphere to compensate the radiative
energy imbalance. Since the convection caused by the vertical differential heating is a fundamental process
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as well as the convection caused by the latitudinal differential heating which appear as extra-tropical cyclones
(and anticyclones) and was the first target of AGCMs [80], we believe that ‘‘general circulation’’ models are
much more complete when both these fundamental processes are directly represented. Further the vertical
convection occurs in the form of cloud clusters or mesoscale convective systems (MCSs) as its elementary
structure which is unique to the earth’s atmosphere being different from Bénard convection widely seen in nat-
ure [81]. Perhaps for this uniqueness and their self-sustaining mechanism, cloud clusters behave more or less
autonomously thus making ‘‘parameterization’’ difficult so that direct simulation of them as a component of
the global circulation seems to be a challenging target. On the basis of these considerations, we decided to
develop ‘‘mesoscale convective system resolving’’ AGCM as one of the major scientific objectives of the devel-
opment of the ES [82].

However, a serious difficulty was foreseen at the beginning. As mentioned previously, the highest resolution
of AGCMs practically possible on the ES was estimated about 10 km whereas the size of updraft region of
mesoscale convective systems is 10–20 km in most cases so that the horizontal grid size needed to express
the systems was estimated to be less than 5 km. Since the computer time required for time integrations of
5-km mesh model is about 10 times longer than that for 10-km mesh, the model might not be used for long
term simulations of practical purposes. Notwithstanding this situation, we initiated the model development
believing that global cloud system resolving model will become necessary in the near future and our undertak-
ing would become a useful first step toward it. Fortunately, the actual computational performance of the ES
turned out to be about 3 times faster than originally declared target of the ES development. This was the result
of the well-considered computer architecture of the vector-parallel processors which worked beyond expecta-
tion and of the efficient numerical codes based on the icosahedral geometry. Hence, NICAM has been produc-
ing scientifically interesting results with the 3.5-km mesh as described in the preceding section.

As described above, the primary objective of developing NICAM is to simulate mesoscale convective cloud
systems in the tropics. Of course, with such an ultra-high resolution NICAM can be applied to a wide class of
problems. An example already underway is numerical experimentation on clouds’ feedback effects on global
warming [53] in which direct calculation of small-scale clouds will give us more reliable results on changes of
cloud amount and reflectivity in a warm world. Further development toward application to the next-genera-
tion numerical weather prediction is also under consideration. Here, however, we shall confine our discussion
to the future direction of research on tropical atmosphere. As already noted, we can say that numerical sim-
ulation of the atmospheric general circulation becomes more reliable by explicit treatment of the convection in
the tropics. In other words, Phillips’ work [80] and subsequent AGCM experiments were basically those on the
middle and high latitude circulations where baroclinic instability due to the latitudinal temperature gradient is
the primary process. The size of the ‘‘energy-containing eddies’’ or the most unstable wave length is O(106) m,
whereupon numerical models with a grid size of O(105) m could simulate well the structure and circulations of
the atmosphere in the middle-high latitude regions. It is noted that with an increase of resolution finer struc-
tures such as sharpening of fronts, spiral winding-up of vortices and so on, become better simulated quite nat-
urally because these smaller scale structures are produced through nonlinear processes (downscale cascade)
from major energy bearing baroclinic vortices. It is also noted that the atmosphere remains stably stratified;
even though condensation takes place, the associated latent heat release does not destroy the mean stability.

In contrast, the characteristics of the tropical atmospheric dynamics are quite different from those of mid-
dle-high latitudes. The tropical atmosphere is in a state of the latent instability; namely the equivalent poten-
tial temperature near the surface is generally higher than those at upper levels and deep cumulonimbus can
develop almost everywhere in most periods of the year. Instead, the latitudinal temperature gradient is small
and baroclinic instability cannot occur. Thus the primary energy source for motions in the tropics lies in the
vertical convection which appears as MCSs as mentioned previously. They have a definite structure which
enables vertical overturning in a state of the latent instability (e.g., [83]). Convections of this relatively small
scale (100–300 km) unit structure occur in various ways. Occasionally they produce larger-scale aggregates
and associated circulation systems through mechanisms yet to be understood. Once we have completed the
model to resolve the elementary structure of convection, we will be able to understand dynamical (and cloud
physical) mechanisms working in various form of occurrences of mesoscale convective systems (MCSs) and
related phenomena. We are aware that it is a huge step from being able to resolve the structure of convection
to actually understanding dynamical mechanisms. But we will be in a position to do numerical experiments
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that should advance our understanding more rapidly. Unlike baroclinic unstable waves in the middle-high lat-
itudes, analytical methods (e.g., linear instability theory) are not applicable and moreover detailed observa-
tions are not easy for tropical convections.

At present, we recognize the following four forms as modes of the occurrence of MCSs to be immediate
objects of research.

(1) MCSs generated by land-sea heating contrast synchronized with the diurnal cycle. Though phenom-
enon like ‘‘afternoon shower’’ is very common and has been known from ancient times their struc-
ture and evolution as MCSs have become clear rather recently pioneered by [84]. It is now known
that this type of precipitation dominates over the maritime continent-Indian ocean region (e.g.,
[85]).

(2) MCSs forming big aggregates and associated with large-scale circulation systems. Phenomena of this
type is called either ‘‘super cloud cluster’’ [86,75] or ‘‘convectively coupled equatorial waves’’ and their
existence has come to be clear quite recently [87–89]. This mode of the occurrence of MCSs are already
reproduced by NICAM in the aqua-planet experiment [52], so that they are the most natural form of
larger-scale structure resulting from MCSs. We may regard this as the tropical counterpart of extra-trop-
ical cyclones (baroclinic waves) because both of these appear spontaneously in idealized numerical
experiments [80,52].

(3) Madden–Julian Oscillation (MJO) or Tropical Intra Seasonal Oscillation (TISO). This is the most pro-
nounced and largest scale phenomenon consisting from MCSs and accompanied by the particular circu-
lation system. Since its discovery [90,91] has been investigated by many researchers because of its
important role in global weather and climate. However, the mechanisms of its generation, maintenance
and variation are not yet completely understood. And the lack of simulations with acceptable fidelity of
the phenomenon in numerical models is a hardest barrier for weather prediction and climate simulation
(e.g., [92]).

(4) MCSs embedded in tropical cyclones and easterly waves (e.g., [93]). This was the first object of studies on
interaction between convection and large-scale circulation systems from which the concept of CISK
(conditional instability of the second kind [94]) and ‘‘parameterization of convection’’ emerged. Natu-
rally the parameterization works reasonably well in this case. It is noted that these weather/circulation
Fig. 13. Pictures to help grasping the notion of ‘‘Two-worlds’’ of the atmospheric general circulation. The left panel is a schematic picture
based on result of the aqua-planet experiment and the right panel is an IR image of clouds of the real earth taken by MTSAT-1R on 9
UTC 4 Sep. 2006. Because of near summer conditions in the northern hemisphere, extra-tropical cyclones are not seen clearly there but the
southern hemisphere is covered by smooth pattern of large-scale weather systems in contrast to the tropics where smaller-scale convective
clouds of various forms are distributed.
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systems posses clear vorticity fields and the conservative nature of vorticity ensures their identity and
sustainability. It is interesting that these phenomena were not found in the aqua-planet experiment by
use of NICAM but appeared in the experiments under realistic conditions implying that ‘‘mother vor-
ticity’’ associated with the shear zone of off-equatorial ITCZ (the intertropical convergence zone) or
monsoon trough are necessary for their generation.

As described above MCSs in the tropics produce a variety of weather/circulation systems but their mech-
anisms are much less understood compared with those at middle-high latitudes.

Summing up the foregoing discussions, we can say that the atmosphere consists from two different worlds
when viewed from the nature of their dynamics (Fig. 13). One is the world at middle-high latitudes where the
atmosphere is stably stratified and extra-tropical cyclones and anticyclones generated by baroclinic instabil-
ity dominate. The dynamics in this world is basically governed by the potential vorticity (PV) conservation
and because of this clear and well-defined basis. Understanding of various phenomena and their modeling
are now matured including numerical weather prediction. We may call this ‘‘quasi-2-D Vortex world’’ or
‘‘PV world’’. On the contrary in the second world at low latitudes the primary energy source lies in individ-
ual convections (MCSs) and modes of their occurrence are diverse as explained previously. Some of them
appear to be coupled with large-scale waves but not associated with vorticity except for mode (4) in the
aforementioned classification. Thus we may call ‘‘convection/wave world’’, or ‘‘VP world’’. Here VP stands
for velocity potential. Though VP is not a physical or dynamical entity as PV, VP is widely used to depict
various circulations such as Hadley, Walker, monsoon circulations and also MJO, and may be suited to
symbolize this world. As already mentioned understanding of the dynamics and numerical modeling of this
world are still at infant stage. Cloud system resolving AGCMs like NICAM will become a powerful research
tool for understanding of those phenomena in the tropics and will contribute to the progress of weather and
climate predictions.

6. Summary

A new type of the atmospheric general circulation model based on the nonhydrostatic system and the ico-
sahedral grid is developed. The new model is called Nonhydrostatic ICosahedral Atmospheric Model
(NICAM). Details of the governing equations with moist processes and outlines of numerical procedures
are described in the present paper. An optimal icosahedral grid is constructed using spring dynamics to
achieve higher numerical accuracy. The nonhydrostatic equations are discretized in the flux form using the
finite volume method over the modified icosahedral grid. The numerical scheme guarantees conservation of
mass, water, and total energy, so that NICAM is suitable for long term integration. The consistency with con-
tinuity (CWC) for tracer components is also guaranteed.

Numerical simulations with 3.5-km horizontal-mesh on the globe are performed over idealized aqua-
planet condition and realistic land and sea distribution using the Earth Simulator. The aqua-planet exper-
iment shows multi-scale structure of tropical convection; super cloud clusters propagate eastward with
phase speed similar to the observations and cloud clusters move westward within super cloud clusters.
This hierarchical structure of cloud systems is very similar to the observed one. Preliminary results of
a more realistic experiment with land and sea distribution show organization of cloud systems such as
typhoons.

We argued future perspective of the use of the global cloud resolving models for studying meso-scale con-
vective systems in the tropics. We will examine results in various perspectives using observational data, par-
ticularly satellite data. Such an approach is taken by [95] using the aqua planet experiment data of the 3.5-km
mesh experiment. In such a new era, more efforts toward fusion of satellite observations and ultra-high reso-
lution modeling should be devoted.
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Appendix A. Operator notation

We summarize notations of the differential operators in this appendix. In order to describe the governing
equations separately in the horizontal and vertical directions, we divide terms of the differential operators into
horizontal and vertical components. The three-dimensional gradient operator for a scalar u and the three-
dimensional divergence operator for a vector u are respectively written as
ru ¼ rhuþ k̂
ou
oz
¼ î

r cos h
ou
ok
þ ĵ

r
ou
oh
þ k̂

ou
oz
; ðA:1Þ

r � u ¼ rh � uh þ
1

r2

oðr2uzÞ
oz

¼ 1

r cos h
ouk

ok
þ oðuh cos hÞ

oh

� �
þ 1

r2

oðr2uzÞ
oz

; ðA:2Þ
where $h is the horizontal gradient operator, î and ĵ are unit vectors in the longitudinal and latitudinal direc-
tions, respectively; and k̂ is outward unit vector in the vertical direction. h and k are latitude and longitude,
respectively, A vector u is decomposed of uzð¼ u � k̂Þ and uhð¼ u� k̂uzÞ, and uk and uh are the longitudinal and
latitudinal components, respectively. z is the vertical coordinate, defined by z ” r � r0, where r0 is the earth
radius. We do not consider ellipsoid of the earth shape, and assume that the radius at the sea level is constant;
hence z is height from the sea level. Hereafter, for an arbitrary three dimensional vector, a bold character with
subscript h denotes the horizontal vector component and italic character with subscript z denotes the vertical
component. $hÆ is the spherical divergence operator.

Standardly, we use the deep atmosphere formulation. For the shallow atmosphere approximation over a
spherical earth, r in (A.1) and (A.2) are replaced by a constant r0. To enable the optionality of the deep
and shallow approximations, we introduce a factor c ” r/r0. With this, we readily derive the following
relations:
crhu ¼ rh0u; crh � u ¼ rh0 � u; ðA:3Þ

where
rh0u ¼
î

r0 cos h
ou
ok
þ ĵ

r0

ou
oh
; ðA:4Þ

rh0 � uh ¼
1

r0 cos h
ouk

ok
þ oðuh cos hÞ

oh

� �
: ðA:5Þ
To include the topographical effects, we introduce the terrain-following coordinates with a transformed ver-
tical coordinate n—an arbitrary monotonic function of height [96,97]. In the current model, we simply use a
linear relation between z and n:
n ¼ zTðz� zsÞ
zT � zs

;

where zT is the top of the model domain and is constant in the entire globe; zs is the surface height which de-
pends on the horizontal location. Here, we define gradient and divergence operators on a constant n shell:
~rh0u �
î

r0 cos h
ou
ok

� �
n

þ ĵ

r0

ou
oh

� �
n

;

~rh0 � uh �
1

r0 cos h
ouk

ok

� �
n

þ oðuh cos hÞ
oh

� �
n

" #
:
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Note that these operators are evaluated at the sea level r0. We define the metrics as
G1=2 � oz
on

� �
h

; Gz � rh0n ¼ �
~rh0z

G1=2
;

where (o/on)h denotes a derivative in the vertical direction. Using this, we obtain the following relations:
G1=2rh0u ¼ ~rh0ðG1=2uÞ þ o

on
GzG1=2u
� �

; ðA:6Þ

G1=2rh0 � uh ¼ ~rh0 � G1=2uh

� �
þ o

on
G1=2uh �Gz
� �

; ðA:7Þ

G1=2 ou
oz
¼ ou

on
: ðA:8Þ
Note that the above equations are not satisfied if $h() and $h Æ () are used instead of $h0() and $h0 Æ ().
Appendix B. The basic equations

B.1. Continuity equations

We consider the system in which unit volume of the air is composed of dry air, water vapor, and liquid and
solid phases of water. In this paper, equations are formulated using the one-moment bulk formula for cloud
microphysical schemes, where the mass concentrations of water categories are treated as prognostic variables
and the numbers of concentration are not. There are both airborne and precipitating components of liquid
and solid phases of water, so that these consist of more than or equal to two components, designated by indi-
ces j and k, respectively. In general, we call airborne component of liquid water ‘‘cloud water’’, and that of
solid water ‘‘cloud ice’’. Precipitating components are categorized in many species depending on cloud micro-
physical schemes. In a simple case, precipitating components of liquid air is ‘‘rain’’, and that of solid water is
‘‘snow’’. If we use more comprehensive scheme such as [98], precipitating components of solid water composed
of more categories such as ‘‘snow’’, ‘‘hail’’, and ‘‘graupel’’. Up to now, we have implemented cloud schemes of
warm rains [99,27] and cold rains [74,100,98].

Let the total density of moist air be denoted by q, the mass concentration of dry air qd, that of vapor qv,
that of the j-th component of liquid water ql,j, and that of the k-th component of solid water qi,k. Total number
of liquid water components is jmax, and that of solid water components is kmax. The continuity equations of
dry air, water vapor, liquid and solid components of water are respectively written as
oðqqdÞ
ot
þrh � qqdvhð Þ þ 1

r2

oðr2qqdwÞ
oz

¼ sd; ðB:1Þ

oðqqvÞ
ot
þrh � ðqqvvhÞ þ

1

r2

oðr2qqvwÞ
oz

¼ sv; ðB:2Þ

oðqql;jÞ
ot

þrh � ðqql;jvhÞ þ
1

r2

o½r2qql;jðwþ w�l;jÞ�
oz

¼ sl;j; for 1 6 j 6 jmax ðB:3Þ

oðqqi;kÞ
ot

þrh � ðqqi;kvhÞ þ
1

r2

o½r2qqi;kðwþ w�i;kÞ�
oz

¼ si;k; for 1 6 k 6 kmax; ðB:4Þ
where s* represents source terms of each category including diffusion and conversion between water categories.
vh and w are the horizontal velocity vector and vertical velocity of the air; w�l;j and w�i;k are terminal velocities
relative to the air; t is the time. Following [70,49], the horizontal velocity is the same as the air irrespective of
water categories, while the vertical velocity depends on categories of water, as represented by w�l;j and w�i;k. We
assume that the sum of the source terms should vanish:
sd þ sv þ
Xjmax

j¼1

sl;j þ
Xkmax

k¼1

si;k ¼ 0: ðB:5Þ
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This implies that both the sum of conversion terms between water categories and the sum of diffusion terms
vanish. The formulations of conversion terms depend on cloud microphysical schemes. We do not describe the
explicit form of these terms in this paper, but refer the interested reader to [99,27,74,100,98] for a complete
exposition.

It is convenient to use sums of liquid phases of water and solid phases of water. Mass concentrations and
source terms are defined by
ql ¼
Xjmax

j¼1

ql;j; sl ¼
Xjmax

j¼1

sl;j; qi ¼
Xkmax

k¼1

qi;k; si ¼
Xkmax

k¼1

si;k:
The mass concentrations of total water is qw = qv + ql + qi and that of dry air is qd = 1 � qw. Summing (B.1),
(B.2), (B.3) over j, and (B.4) over k, and using (B.5), we obtain the continuity equation of total density as
oq
ot
þrh � ðqvhÞ þ

1

r2

oðr2qwÞ
oz

¼ �
Xjmax

j¼1

1

r2

oðr2qql;jw
�
l;jÞ

oz
�
Xkmax

k¼1

1

r2

oðr2qqi;kw�i;kÞ
oz

: ðB:6Þ
The first and second terms on the right hand side represent flux convergences of liquid and solid water due to
precipitating velocities relative to the mass center of the air, respectively.

B.2. Momentum equation

The momentum equation derives from the fundamental Navier–Stokes’ equations, posed in the rotating
reference frame with the origin in the center of the Earth (Fig. 1). In a vector notation, the momentum equa-
tion for a multiphase atmospheric fluid is compactly written as
oðqvÞ
ot
þr � ðqv� vÞ þ 2qX	 v ¼ �rp � qgk̂þ f �

Xjmax

j¼1

r � ðr2qql;jv
�
l;j � vÞ �

Xkmax

k¼1

r � ðr2qqi;kv�i;k � vÞ;

ðB:7Þ

where p is pressure; g, X, and f are the acceleration due to gravity, the angular velocity of the earth, and the
frictional force, such as viscosity, respectively; � and · stand for the tensor product and the outer product,
respectively. The last two terms on the right hand side of (B.7) represent the drag forcing, where
v�l;j ¼ ð0; 0;w�l;jÞ and v�i;k ¼ ð0; 0;w�i;kÞ. In this equation, the material derivatives of w�l;j and w�i;k along paths of
precipitation are ignored. The validation of this approximation is discussed in [70]. For convenience, we
abbreviate the advection term and Coriolis term to a and c, respectively:
a � r � ðqv� vÞ; c � 2qX	 v:
The vertical velocity component and the horizontal velocity vector are w ¼ v � k̂ and vh ¼ v� wk̂, respectively.
From (B.7), the horizontal and the vertical momentum equations are given by
oðqvhÞ
ot
þ ah þ ch ¼ �rhp þ fh �

Xjmax

j¼1

1

r2

oðr2qql;jw
�
l;jvhÞ

oz
�
Xkmax

k¼1

1

r2

oðr2qqi;kw�i;kvhÞ
oz

: ðB:8Þ

oðqwÞ
ot
þ az þ cz ¼ �

op
oz
� qg þ fz �

Xjmax

j¼1

1

r2

oðr2qql;jw
�
l;jwÞ

oz
�
Xkmax

k¼1

1

r2

oðr2qqi;kw�i;kwÞ
oz

; ðB:9Þ
B.3. Energy equation

First, we summarize thermodynamic variables used in this model. Following [49], we neglect the depen-
dence of specific heats on the temperature but consider the dependence of latent heats on temperature. The
latent heats for vaporization and fusion are expressed respectively as
Lv ¼ Lv00 þ Cpv � Cl

� �
T ; Lf ¼ Lf00 þ ðCl � CiÞT :
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where T is temperature; Cpv is the specific heat at constant pressure for water vapor; Cl and Ci are the specific
heats for liquid water and solid water; Lv00 is the latent heat of vaporization at 0 K and Lf00 is that of fusion at
0 K. The enthalpy and internal energy per unit mass for each substances are defined as follows:
hd ¼ CpdT ; hv ¼ CpvT þ Lv00; hl;j ¼ ClT ; hi;k ¼ CiT � Lf00;

ed ¼ CvdT ; ev ¼ CvvT þ Lv00; el;j ¼ hl;j; ei;k ¼ hi;k
where Cpd is the specific heat at constant pressure for dry air; Cvd (=Cpd � Rd) and Cvv (=Cpv � Rv) are the
specific heats at the constant volume for dry air and water vapor, respectively, Rd and Rv are the gas constants
for dry air and water vapor, respectively. The moist enthalpy per unit mass (including water substance), pres-
sure, and the moist internal energy are respectively written as
h ¼ qdCpdT þ qvðCpvT þ Lv00Þ þ qlClT þ qiðCiT � Lf00Þ; ðB:10Þ
p ¼ qðqdRd þ qvRvÞT ; ðB:11Þ

e ¼ h� p
q
¼ qdCvdT þ qvðCvvT þ Lv00Þ þ qlClT þ qiðCiT � Lf00Þ: ðB:12Þ
It should be commented here that, in the forms of (B.10) and (B.12), enthalpy and internal energy of water
substance are measured from those of liquid water at 0 K. If enthalpy and internal energy of water substance
are measured from those of solid water at 0 K, (B.10) and (B.12) are replaced respectively by
h ¼ qdCpdT þ qvðCpvT þ Lv00 þ Lf00Þ þ qlðClT þ Lf00Þ þ qiCiT ;

e ¼ qdCvdT þ qvðCvvT þ Lv00 þ Lf00Þ þ qlðClT þ Lf00Þ þ qiCiT :
The resulting conservation equation for the moist internal energy takes the form:
oðqeÞ
ot
þrh � ðqvhhÞ þ 1

r2

oðr2qwhÞ
oz

¼ vh � rhp þ w
op
oz

� �
�

Xjmax

j¼1

1

r2

oðr2qql;jel;jw�l;jÞ
oz

þ
Xkmax

k¼1

1

r2

oðr2qqi;kei;kw�i;kÞ
oz

" #

�
Xjmax

j¼1

qql;jgw�l;j þ
Xkmax

k¼1

qqi;kgw�i;k

 !
� ðvh � fh þ wfzÞ þ qheat; ðB:13Þ
where qheat represents source term of internal energy, such as radiative forcing and convergence of latent and
sensible heat fluxes. The first term on the right hand side represents the conversion from kinetic energy due to
pressure force, the second term represents the vertical convergence of precipitating fluxes, and the third term
represents the heat source by the drag force, which is converted from potential energy [70].

The moist internal energy (B.12) can be rewritten as
e ¼ CVT þ ðqvLv00 � qiLf00Þ ¼ ea þ ðqvLv00 � qiLf00Þ; ðB:14Þ

where ea ” CVT and CV = qdCvd + qvCvv + qlCl + qiCi represents the specific heat of total air at constant vol-
ume. From this, we regard the first term of (B.14) as the sensible heat part of internal energy, and the second
term, (qvLv00 � qiLf00), as the latent heat part of internal energy. In the same way, we define the sensible heat
part of enthalpy, which is denoted by ha ” h � (qvLv00 � qiLf00). Multiplying the sum of (B.4) over k by Lf00

and (B.2) by Lv00, and subtracting the two from (B.13), we obtain the equation of the sensible heat part of
internal energy; that is
oðqeaÞ
ot
þrh � ðqvhhaÞ þ

1

r2

oðr2qwhaÞ
oz

¼ vh � rhp þ w
op
oz

� �
�

Xjmax

j¼1

1

r2

oðr2qql;jClTw�l;jÞ
oz

þ
Xkmax

k¼1

1

r2

oðr2qqi;kCiTw�i;kÞ
oz

" #

�
Xjmax

j¼1

qql;jgw�l;j þ
Xkmax

k¼1

qqi;kgw�i;k

 !
� ðvh � fh þ wfzÞ þ qheat � Lv00sv þ Lf00si: ðB:15Þ
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B.4. The conservation of total energy

We demand that the total energy is conserved in our model. In the following, we review some pertinent
points. The kinetic energy is defined by
k ¼ qðvh � vh þ w2Þ
2

:

The equation of kinetic energy can be derived from the momentum equations:
oðqkÞ
ot
þrh � ðqvhkÞ þ 1

r2

oðr2qwkÞ
oz

¼ � vh � rhp þ w
op
oz

� �
� qgw�

Xjmax

j¼1

1

r2

oðr2qql;jw
�
l;jkÞ

oz
þ
Xkmax

k¼1

1

r2

oðr2qqi;kw�i;kkÞ
oz

" #
þ vh � fh þ wfz:

ðB:16Þ
The equation of potential energy is simply qd//dt = qgw, where geopotential / = gz. The flux-form equation
of potential energy is derived from this equation, using the total-mass continuity (B.6); that is,
oðq/Þ
ot
þrh � ðqvh/Þ þ

1

r2

oðr2qw/Þ
oz

¼ qgwþ
Xjmax

j¼1

qql;jgw�l;j þ
Xkmax

k¼1

qqi;kgw�i;k

�
Xjmax

j¼1

1

r2

oðr2qql;jw
�
l;j/Þ

oz
þ
Xkmax

k¼1

1

r2

oðr2qqi;kw�i;k/Þ
oz

" #
: ðB:17Þ
The sum of (B.13), (B.17), and (B.16) gives the conservation law of the total energy. If we use the sensible heat
part of internal energy ea instead of e, the equation of the corresponding total energy can be written as
o½qðea þ k þ /Þ�
ot

þrh � ½qvhðha þ k þ /Þ� þ 1

r2

o½r2qwðha þ k þ /Þ�
oz

¼ �
Xjmax

j¼1

1

r2

o½r2qql;jðClT þ k þ /Þw�l;j�
oz

þ
Xkmax

k¼1

1

r2

o½r2qqi;kðCiT þ k þ /Þw�i;k�
oz

( )
þ qheat � Lv00sv þ Lf00si:

ðB:18Þ
B.5. Summary of the governing equations

Here, we summarize the governing equations of the model: the continuity equations are (B.6) for total
mass, (B.2) for water vapor, and (B.3) and (B.4) for each component of liquid and solid water substances.
The momentum equations are (B.8) for the horizontal components and (B.9) for the vertical component of
momentum. As for energy, we use the sensible heat part of internal energy Eq. (B.15). Additionally, we use
the conservation of total energy (B.18). Equations are discretized in the flux form by defining control volumes
in space. Thus, the prognostic variables are (q; qvh; qw; qea; qqv; qql;j; qqi;j). The other variables, such as p and
T, are derived diagnostically from these prognostic variables.
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